Comparing ASR modeling methods for spoken dialogue simulation and optimal strategy learning

نویسندگان

  • Olivier Pietquin
  • Richard Beaufort
چکیده

Speech enabled interfaces are nowadays becoming ubiquitous. The most advanced ones rely on probabilistic pattern matching systems and especially on automatic speech recognition systems. Because of their statistical nature, performances of such systems never reach one hundred percent of correct recognition results. Performances are linked to environmental noise and to intraand inter-speaker variability of course, but also to the acoustical similarities inside the vocabulary of allowed speech entries, which is usually contextual in the case of man-machine dialogue systems. A good dialogue strategy should therefore dynamically handle the potentiality of recognition errors. In this paper, we compare different methods to model ASR systems in the framework of automatic dialogue strategy optimization and we especially emphasize on a contextdependent ASR modeling method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

On-Line Learning of a Persian Spoken Dialogue System Using Real Training Data

The first spoken dialogue system developed for the Persian language is introduced. This is a ticket reservation system with Persian ASR and NLU modules. The focus of the paper is on learning the dialogue management module. In this work, real on-line training data are used during the learning process. For on-line learning, the effect of the variations of discount factor (g) on the learning speed...

متن کامل

An Application of Reinforcement Learning to Dialogue Strategy Selection in a Spoken Dialogue System for Email

This paper describes a novel method by which a spoken dialogue system can learn to choose an optimal dialogue strategy from its experience interacting with human users. The method is based on a combination of reinforcement learning and performance modeling of spoken dialogue systems. The reinforcement learning component applies Q-learning (Watkins, 1989), while the performance modeling componen...

متن کامل

Hierarchical Reinforcement Learning for Spoken Dialogue Systems

This thesis focuses on the problem of scalable optimization of dialogue behaviour in speech-based conversational systems using reinforcement learning. Most previous investigations in dialogue strategy learning have proposed flat reinforcement learning methods, which are more suitable for small-scale spoken dialogue systems. This research formulates the problem in terms of Semi-Markov Decision P...

متن کامل

A framework for dialogue data collection with a simulated ASR channel

The application of machine learning methods to the dialogue management component of spoken dialogue systems is a growing research area. Whereas traditional methods use handcrafted rules to specify a dialogue policy, machine learning techniques seek to learn dialogue behaviours from a corpus of training data. In this paper, we identify the properties of a corpus suitable for training machine-lea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005